Publications

Total: 146
Strengthening surveillance systems for malaria elimination: a global landscaping of system performance, 2015–2017
Malaria Journal.
Author(s): Christopher Lourenço, Andrew J. Tatem, Peter M. Atkinson, Justin M. Cohen, Deepa Pindolia, Darlene Bhavnani & Arnaud Le Menach
Type: method. Year: 2019
DOI: 10.1186/s12936-019-2960-2.

Abstract: Background Surveillance is a core component of an effective system to support malaria elimination. Poor surveillance data will prevent countries from monitoring progress towards elimination and targeting interventions to the last remaining at-risk places. An evaluation of the performance of surveillance systems in 16 countries was conducted to identify key gaps which could be addressed to build effective systems for malaria elimination. Methods A standardized surveillance system landscaping was conducted between 2015 and 2017 in collaboration with governmental malaria programmes. Malaria surveillance guidelines from the World Health Organization and other technical bodies were used to identify the characteristics of an optimal surveillance system, against which systems of study countries were compared. Data collection was conducted through review of existing material and datasets, and interviews with key stakeholders, and the outcomes were summarized descriptively. Additionally, the cumulative fraction of incident infections reported through surveillance systems was estimated using surveillance data, government records, survey data, and other scientific sources. Results The landscaping identified common gaps across countries related to the lack of surveillance coverage in remote communities or in the private sector, the lack of adequate health information architecture to capture high quality case-based data, poor integration of data from other sources such as intervention information, poor visualization of generated information, and its lack of availability for making programmatic decisions. The median percentage of symptomatic cases captured by the surveillance systems in the 16 countries was estimated to be 37%, mostly driven by the lack of treatment-seeking in the public health sector (64%) or, in countries with large private sectors, the lack of integration of this sector within the surveillance system. Conclusions The landscaping analysis undertaken provides a clear framework through which to identify multiple gaps in current malaria surveillance systems. While perfect systems are not required to eliminate malaria, closing the gaps identified will allow countries to deploy resources more efficiently, track progress, and accelerate towards malaria elimination. Since the landscaping undertaken here, several countries have addressed some of the identified gaps by improving coverage of surveillance, integrating case data with other information, and strengthening visualization and use of data.
Link to paper


Comparisons of two global built area land cover datasets in methods to disaggregate human population in eleven countries from the global South
International Journal of Digital Earth.
Author(s): Forrest R. Stevens,Andrea E. Gaughan,Jeremiah J. Nieves,Adam King,Alessandro Sorichetta,Catherine Linard &Andrew J. Tatem
Type: method. Year: 2019
DOI: 10.1080/17538947.2019.1633424.

Abstract: Mapping built land cover at unprecedented detail has been facilitated by increasing availability of global high-resolution imagery and image processing methods. These advances in urban feature extraction and built-area detection can refine the mapping of human population densities, especially in lower income countries where rapid urbanization and changing population is accompanied by frequently out-of-date or inaccurate census data. However, in these contexts it is unclear how best to use built-area data to disaggregate areal, count-based census data. Here we tested two methods using remotely sensed, built-area land cover data to disaggregate population data. These included simple, areal weighting and more complex statistical models with other ancillary information. Outcomes were assessed across eleven countries, representing different world regions varying in population densities, types of built infrastructure, and environmental characteristics. We found that for seven of 11 countries a Random Forest-based, machine learning approach outperforms simple, binary dasymetric disaggregation into remotely-sensed built areas. For these more complex models there was little evidence to support using any single built land cover input over the rest, and in most cases using more than one built-area data product resulted in higher predictive capacity. We discuss these results and implications for future population modeling approaches.
Link to paper


Annually Modelling Built-settlements between Remotely-sensed Observations Using Relative Changes in Subnational Populations and Lights at Night
Preprints.
Author(s): Jeremiah J. Nieves, Alessandro Sorichetta, Catherine Linard ORCID, Maksym Bondarenko, Jessica Steele, Forrest Stevens, Andrea E. Gaughan, Alessandra Carioli, Donna Clarke, Thomas Esch, Andrew J. Tatem
Type: method. Year: 2019
DOI: 10.20944/preprints201812.0250.v3.

Abstract: Mapping settlement extents at the annual time step has a wide variety of applications in demography, public health, sustainable development, and many other fields. Recently, while more multitemporal urban feature or human settlement datasets have become available, issues still exist in remotely-sensed imagery due to coverage, adverse atmospheric conditions, and expenses involved in producing such feature sets. These challenges make it difficult to increase temporal coverage while maintaining high fidelity in the spatial resolution. Here we demonstrate an interpolative and flexible modeling framework for producing annual built-settlement extents. We use a combined technique of random forest and spatio-temporal dasymetric modeling with open source subnational data to produce annual 100m x 100m resolution binary settlement maps in four test countries of varying environmental and developmental contexts for test periods of five-year gaps. We find that in the majority of years, across all study areas, the model correctly identified between 85-99% of pixels that transition to built-settlement. Additionally, with few exceptions, the model substantially out performed a model that gave every pixel equal chance of transitioning to the category “built” in each year. This modelling framework shows strong promise for filling gaps in cross-sectional urban feature datasets derived from remotely-sensed imagery, provide a base upon which to create future built/settlement extent projections, and further explore the relationships between built area and population dynamics.
Link to paper


Extending Data for Urban Health Decision-Making: a Menu of New and Potential Neighborhood-Level Health Determinants Datasets in LMICs
Journal of Urban Health.
Author(s): Dana R. Thomson, Catherine Linard, Sabine Vanhuysse, Jessica E. Steele, Michal Shimoni & José Siri, Waleska Teixeira Caiaffa, Megumi Rosenberg, Eléonore Wolff, Taïs Grippa, Stefanos Georganos, Helen Elsey
Type: method. Year: 2019
DOI: 10.1007/s11524-019-00363-3.

Abstract: Area-level indicators of the determinants of health are vital to plan and monitor progress toward targets such as the Sustainable Development Goals (SDGs). Tools such as the Urban Health Equity Assessment and Response Tool (Urban HEART) and UN-Habitat Urban Inequities Surveys identify dozens of area-level health determinant indicators that decision-makers can use to track and attempt to address population health burdens and inequalities. However, questions remain as to how such indicators can be measured in a cost-effective way. Area-level health determinants reflect the physical, ecological, and social environments that influence health outcomes at community and societal levels, and include, among others, access to quality health facilities, safe parks, and other urban services, traffic density, level of informality, level of air pollution, degree of social exclusion, and extent of social networks. The identification and disaggregation of indicators is necessarily constrained by which datasets are available. Typically, these include household- and individual-level survey, census, administrative, and health system data. However, continued advancements in earth observation (EO), geographical information system (GIS), and mobile technologies mean that new sources of area-level health determinant indicators derived from satellite imagery, aggregated anonymized mobile phone data, and other sources are also becoming available at granular geographic scale. Not only can these data be used to directly calculate neighborhood- and city-level indicators, they can be combined with survey, census, administrative and health system data to model household- and individual-level outcomes (e.g., population density, household wealth) with tremendous detail and accuracy. WorldPop and the Demographic and Health Surveys (DHS) have already modeled dozens of household survey indicators at country or continental scales at resolutions of 1 × 1 km or even smaller. This paper aims to broaden perceptions about which types of datasets are available for health and development decision-making. For data scientists, we flag area-level indicators at city and sub-city scales identified by health decision-makers in the SDGs, Urban HEART, and other initiatives. For local health decision-makers, we summarize a menu of new datasets that can be feasibly generated from EO, mobile phone, and other spatial data—ideally to be made free and publicly available—and offer lay descriptions of some of the difficulties in generating such data products.
Link to paper