Total: 146
Exploring fine-scale human and livestock movement in western Kenya
One Health Volume 7, June 2019, 100081.
Author(s): Jessica R. Floyd, Nick W. Ruktanonchai, Nicola Wardrop, Andrew J. Tatem, Joseph Ogola, Eric M.Fèvre
Type: method. Year: 2019
DOI: 10.1016/j.onehlt.2019.100081.

Abstract: Human and livestock mobility are key factors in the transmission of several high-burden zoonoses such as rift valley fever and trypanosomiasis, yet our knowledge of this mobility is relatively poor due to difficulty in quantifying population-level movement patterns. Significant variation in the movement patterns of individual hosts means it is necessary to capture their fine-scale mobility in order to gain useful knowledge that can be extrapolated to a population level. Here we explore how the movements of people and their ruminants, and their exposure to various types of land cover, correlate with ruminant ownership and other demographic factors which could affect individual exposure to zoonoses. The study was conducted in Busia County, western Kenya, where the population are mostly subsistence farmers operating a mixed crop/livestock farming system. We used GPS trackers to collect movement data from 26 people and their ruminants for 1 week per individual in July/August 2016, and the study was repeated at the end of the same year to compare movement patterns between the short rainy and dry seasons respectively. We found that during the dry season, people and their ruminants travelled further on trips outside of the household, and that people spent less time on swampland compared to the short rainy season. Our findings also showed that ruminant owners spent longer and travelled further on trips outside the household than non-ruminant owners, and that people and ruminants from poorer households travelled further than people from relatively wealthier households. These results indicate that some individual-level mobility may be predicted by season and by household characteristics such as ruminant ownership and household wealth, which could have practical uses for assessing individual risk of exposure to some zoonoses and for future modelling studies of zoonosis transmission in similar rural areas.
Link to paper

Global spatio-temporally harmonised datasets for producing high-resolution gridded population distribution datasets
Taylor & Francis Online.
Author(s): Christopher T. Lloyd, Heather Chamberlain, David Kerr, Greg Yetman, Linda Pistolesi, Forrest R. Stevens, Andrea E. Gaughan, Jeremiah J. Nieves, Graeme Hornby, Kytt MacManus, Parmanand Sinha, Maksym Bondarenko, Alessandro Sorichetta & Andrew J. Tatem
Type: method. Year: 2019
DOI: 10.1080/20964471.2019.1625151.

Abstract: Multi-temporal, globally consistent, high-resolution human population datasets provide consistent and comparable population distributions in support of mapping sub-national heterogeneities in health, wealth, and resource access, and monitoring change in these over time. The production of more reliable and spatially detailed population datasets is increasingly necessary due to the importance of improving metrics at sub-national and multi-temporal scales. This is in support of measurement and monitoring of UN Sustainable Development Goals and related agendas. In response to these agendas, a method has been developed to assemble and harmonise a unique, open access, archive of geospatial datasets. Datasets are provided as global, annual time series, where pertinent at the timescale of population analyses and where data is available, for use in the construction of population distribution layers. The archive includes sub-national census-based population estimates, matched to a geospatial layer denoting administrative unit boundaries, and a number of co-registered gridded geospatial factors that correlate strongly with population presence and density. Here, we describe these harmonised datasets and their limitations, along with the production workflow. Further, we demonstrate applications of the archive by producing multi-temporal gridded population outputs for Africa and using these to derive health and development metrics.
Link to paper

The spatial allocation of population: a review of large-scale gridded population data products and their fitness for use
Earth System Science Data, Volume 11, issue 3.
Author(s): Stefan Ley, Andrea E. Gaughan, Susana B. Adamo, Alex de Sherbinin, Deborah Balk, Sergio Freire, Amy Rose, Forrest R. Stevens, Brian Blankespoor, Charlie Frye, Joshua Comenetz, Alessandro Sorichetta, Kytt MacManus, Linda Pistolesi, Marc Levy, Andrew J. Tatem, and Martino Pesaresi
Type: method. Year: 2019
DOI: 10.5194/essd-11-1385-2019.

Abstract: Population data represent an essential component in studies focusing on human–nature interrelationships, disaster risk assessment and environmental health. Several recent efforts have produced global- and continental-extent gridded population data which are becoming increasingly popular among various research communities. However, these data products, which are of very different characteristics and based on different modeling assumptions, have never been systematically reviewed and compared, which may impede their appropriate use. This article fills this gap and presents, compares and discusses a set of large-scale (global and continental) gridded datasets representing population counts or densities. It focuses on data properties, methodological approaches and relative quality aspects that are important to fully understand the characteristics of the data with regard to the intended uses. Written by the data producers and members of the user community, through the lens of the “fitness for use” concept, the aim of this paper is to provide potential data users with the knowledge base needed to make informed decisions about the appropriateness of the data products available in relation to the target application and for critical analysis.
Link to paper

Evaluating nighttime lights and population distribution as proxies for mapping anthropogenic CO2 emission in Vietnam, Cambodia and Laos
Author(s): Andrea E Gaughan, Tomohiro Oda, Alessandro Sorichetta, Forrest R Stevens, Maksym Bondarenko, Rostyslav Bun, Laura Krauser, Greg Yetman and Son V Nghiem
Type: method. Year: 2019
DOI: 10.1088/2515-7620/ab3d91.

Abstract: Tracking spatiotemporal changes in GHG emissions is key to successful implementation of the United Nations Framework Convention on Climate Change (UNFCCC). And while emission inventories often provide a robust tool to track emission trends at the country level, subnational emission estimates are often not reported or reports vary in robustness as the estimates are often dependent on the spatial modeling approach and ancillary data used to disaggregate the emission inventories. Assessing the errors and uncertainties of the subnational emission estimates is fundamentally challenging due to the lack of physical measurements at the subnational level. To begin addressing the current performance of modeled gridded CO2 emissions, this study compares two common proxies used to disaggregate CO2 emission estimates. We use a known gridded CO2 model based on satellite-observed nighttime light (NTL) data (Open Source Data Inventory for Anthropogenic CO2, ODIAC) and a gridded population dataset driven by a set of ancillary geospatial data. We examine the association at multiple spatial scales of these two datasets for three countries in Southeast Asia: Vietnam, Cambodia and Laos and characterize the spatiotemporal similarities and differences for 2000, 2005, and 2010. We specifically highlight areas of potential uncertainty in the ODIAC model, which relies on the single use of NTL data for disaggregation of the non-point emissions estimates. Results show, over time, how a NTL-based emissions disaggregation tends to concentrate CO2 estimates in different ways than population-based estimates at the subnational level. We discuss important considerations in the disconnect between the two modeled datasets and argue that the spatial differences between data products can be useful to identify areas affected by the errors and uncertainties associated with the NTL-based downscaling in a region with uneven urbanization rates.
Link to paper