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Abstract 

Currently, the categorisation of the urban-rural continuum varies depending on national 
definitions — diminishing the effectiveness of international statistical comparison. The 
United Nations Sustainable Development Goals, for example, demands a universal 
measuring standard. The degree of urbanisation classification seeks to provide the solution. 
Effectively, the classification categorises the urban-rural continuum by 1 km2 gridded cells 
using population characteristics; instead of using localised spatial units or definitions. In 
various countries, however, inaccurate census data prevails. Where population data remains 
limited estimation models are used. The purpose of this report is to assess the relative 
uncertainty of the degree of urbanisation's varying classification outputs — when inserting 
different population models into the tool for the same area. Specifically, the paper explores 
Nigeria in 2020. The population estimation models encompassed WorldPop Top-down 
Unconstrained, WorldPop Top-down Constrained, WorldPop Bottom-up and GHSL’s GHS-
POP model. If the classification outputs vary greatly, the methodology — endorsed by the 
United Nations Statistical Commission — is ineffective for classifying countries using 
modelled datasets. To compare the classification outputs a classification analysis, entropy 
and binary comparison were used. These sensitivity analysis tests uncovered the WorldPop 
Top-down Unconstrained dataset was dissimilar compared with the other population 
estimation models. The results were later presented to the European Commission. For 
future research, testing and comparing different countries — with opposing population 
patterns — to Nigeria holds importance. 
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Introduction 

Across the globe national definitions categorising the urban-rural continuum vary — 
reducing the capacity to undertake international statistical comparison. The degree of 
urbanisation classification, endorsed by the United Nations Statistical Commission, offers a 
universal methodology for comparison (Dijkstra et al., 2021). Eurostat (2021) illustrates the 
methodology classifies the urban-rural continuum into equal sized 1 km2 gridded cells; 
instead of employing localised spatial units. At the first level the degree of urbanisation 
classifies the gridded cells based on the populations size, density and contiguity. Eurostat 
(2021) defines the first level’s three distinct classifications as urban centres, urban clusters 
and rural grid cells. Through classifying the urban-rural continuum into equal gridded cells 
the capacity to measure the United Nations Sustainable Development Goals is enhanced. 
Critically, classifying for goals requiring specific urban or rural indicators — including access 
to public transport — improves policymaking (Dijkstra et al., 2022). Following the degree of 
urbanisation’s emergence as a methodology to undertake international statistical 
comparison, the European Commission (2020a) has demanded further investigation. 

One key challenge the European Commission (2020a) identified comprised of accounting for 
the absence of correct geo-coded censuses or population registers. Currently, the time delay 
amid resource-poor countries data collection and publication lessens censuses robustness; 
whilst corruption prevails where population is linked with resource allocation (Wardrop et 
al., 2018). Where the unavailability of correct datasets exists, Eurostat (2021) recommends 
creating a disaggregation grid. Eurostat (2021) instructs disaggregation grids are formed 
using a combination of population models and land use data. The population models, 
however, vary in structure and covariates (Wardrop et al., 2018). Effectively, for the degree 
of urbanisation to produce results for international statistical comparison — the 
methodology necessitates producing uniform results regardless of population model 
inputted (Dijkstra et al., 2021). The reports’ purpose, therefore, is to employ a sensitivity 
analysis towards uncovering the relative uncertainty of inserting different population 
models into the degree of urbanisation methodology. If the outputs vary greatly, the tool is 
ineffective for classifying countries using modelled datasets — addressing a challenge 
outlined by European Commission (2020a). 

To start, the degree of urbanisation alongside strategy to address the challenge — namely 
exploring variations in classification outputs using different population models — have been 
introduced and justified. Following this, the methods section first describes the data 
selection and characteristics; then establishes the workflow using GIS; before finishing with 
the methods of sensitivity analysis. The results section precedes, comprising of the 
appropriate tables and maps. Subsequently, the discussion seeks to explore and compare 
the metrics alongside the classification outputs. Finally, the conclusion seeks to synthesise 
the findings and present future research topics.  
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Methods 

Data Selection 

Nigeria was selected for investigation owing to the diverse range of existing population 
models and real-world application. Nigeria’s last census, conducted in 2006, was deemed 
unacceptable by the countries National Population Commission (Serra and Jerven, 2021). 
The predominant invalidating factors encompassed widespread over enumeration and 
settlement omission — population models thus remain Nigeria’s sole option for applying the 
degree of urbanisation (Serra and Jerven, 2021). Effectively, the real-world application of 
utilising population models frames Nigeria as appropriate towards attaining the research 
aims. Likewise, an abundance of population models enable comparison of classification 
output (Bondarenko et al., 2020; Schiavina et al., 2022). These models illustrate Nigeria’s 
dense populations surrounding Lagos on the coast and Kano in the north; whilst large rural 
expanses prevail in the far east and west (Bondarenko et al., 2020). 

Within the investigation 4 population models for the year 2020 were chosen to process 
through the degree of urbanisation workflow and thereafter analyse the output. The 
population models encompassed WorldPop’s Top-down Unconstrained dataset, Top-down 
Constrained dataset and Bottom-up dataset (Bondarenko et al., 2020; WorldPop, 2018a; 
WorldPop and National Population Commission of Nigeria, 2021); with the addition of the 
GHS Population Grid (Schiavina et al., 2022). For later comparison, a mixture of constrained 
and unconstrained datasets was selected. Constrained models limit population to areas with 
building presence; instead, unconstrained models allocate population ubiquitously 
(Thomson et al., 2021).  

For each population model the corresponding settlement datasets was also required to 
implement the 50% Built-up in Urban Cluster rule. The 50% rule was incorporated owing to 
the European Commission (2020b) expressing the action mitigates the issue of allocating 
populations to low density urban sprawl — through producing urban centres based on cells 
with a density of 1,500 and are 50% permanently built-up. Preliminary testing illustrated 
implementing the 50% rule limited most of the urban centre’s size, though the individual 
centres were not completely omitted. Below is a table highlighting the differences amid the 
population estimation models and corresponding underlying settlement datasets.  
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Table 1 – Population Estimation Models Used Within Investigation 

 

Population 
Model 

Top-
down Unconstrained 
WorldPop (WorldPop, 
2018a) 

Top-down Constrained 
WorldPop (Bondarenko 
et al., 2020) 

Bottom-up WorldPop 
(WorldPop and National 
Population Commission 
of Nigeria, 2021) 

GHS-POP          
(Schiavina et al., 2022) 

Associated 
Settlement 
Model 

Built-Settlement Extents, 
Nigeria (WorldPop, 2018b) 

Built-Settlement Extents, 
Nigeria (WorldPop, 2018b) 

Griddled maps of building 
patterns throughout sub-
Saharan Africa, Nigeria 
(Dooley et al., 2020) 

 GHS-BUILT-S (Pesaresi and 
Politis, 2022) 

Population 
Model 
Formation 

The estimated population 
density is represented by a 
weighting layer developed 
using Random Forest based 
dasymetric mapping. Once 
produced, the weighting 
layer is then used for 
dasymetrically 
disaggregating population 
counts for local units to 
gridded cells. So, the model 
starts with a complete 
picture and then works 
backwards to form the 
estimate. The model is not 
constrained by the built-up 
settlements (WorldPop, no 
date). 

The models’ geospatial 
covariates were based on 
the Global High Resolution 
Population Denominators 
Project’s data. To map the 
estimated people per grid 
cell, the Random Forests-
based dasymetric 
redistribution method was 
employed. The population 
was after constrained by 
built-up settlements using 
building footprints from 
Digitize Africa project of 
Ecopia (Bondarenko et al., 
2020). 

Starts from incomplete 
micro census or surveyed 
population counts and then 
layers covariate data on 
top to form a complete 
estimate. The model forms 
an estimation of population 
on non-surveyed areas  
built on covariates, using 
statistical modelling 
(WorldPop and National 
Population Commission of 
Nigeria, 2021). 

The European Commission 
(2022) explains the model 
employs a top-down 
constrained method 
where the spatial raster 
portrays the distribution of 
population, conveyed 
as the number of people 
per cell. The population 
estimates are derived from 
census data disaggregated 
from administrative units 
to grid cells, informed by 
the characteristics of built-
up as mapped in the GHSL 
global layers for matching 
time-period. 

Population 
Model 
Output Grids 

Gridded population 
estimates in 3 arc seconds 
defined population totals 
(WorldPop, 2018a). 

Griddled Population 
estimates in 3 arc seconds 
that sum to pre-defined 
totals (Bondarenko et al., 
2020). 

Gridded population 
estimates at 3 arc seconds 
that fill gaps between 
surveyed areas (WorldPop 
and National Population 
Commission of Nigeria, 
2021). 

Gridded population 
estimates at (1km) in 
World Mollweide 
coordinate system 
(Schiavina et al., 2022). 

Population 
Model 
Assumptions 

No settlement model is 
correct accurate enough to 
identify all buildings and 
thus be used as a mask to 
map uninhabited areas 
(WorldPop, 2022b). 

 The recent improvements 
in settlement models 
allows for builds to be used 
as a mask to map 
uninhabited areas 
(WorldPop, 2022b). 

The areas where no 
population data currently 
exists is accurately mapped 
based on related data 
(WorldPop and National 
Population Commission of 
Nigeria, 2021). 

The European Commission 
(2022) assumes the 
population estimates by 
CIESIN GPWv4.10 are 
accurate. 
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Workflow  

 

Figure 1 - GIS Workflow for Investegation 

 

Figure 1 displays a model created using ArcGIS Pro Model Builder illustrating the workflow 
employed. Unless using a GHSL standalone tool, the complete workflow displayed used 
ArcGIS Pro Version 2.9.3. Before stating the workflow illustrated within figure 1, however, 
implementing the European Commission’s (2021) GHS-POPWARP standalone tool must 
transpire. The specific details of processing pane input information are found in the 
appendix. The European Commission (2021) express the purpose of the GHS-POPWARP 
standalone tool is reprojecting the population models from a geographic coordinate system 
to a projected coordinate system — namely Mollweide — whilst maintaining volume. Owing 
to the degree of urbanisation’s stipulation for equal gridded cells, the later used GHS-DUG 
standalone tool, produced by the European Commission (2020b), only supports projected 
coordinate systems. So, utilising the GHS-POPWARP standalone reprojecting function stood 
necessary. Through experimentation, the standalone versions for all GHSL tools were 
processed quicker, compared with ArcGIS Pro versions, thus were preferred. 

The following section entailed creating a ‘Mask Raster’ to function as a consistent mask, 
overlapping unwanted features for both population and settlement models (Esri, no date a). 
As the figure 1 illustrates, ‘Warped Population Data 1’ processed through the Int (Spatial 
Analyst) and Reclassify (Spatial Analyst) geoprocessing tools. The specific inputs into the 
geoprocessing pane are found in the appendix. The Int (spatial analyst) tool held necessity 
as the Reclassify tool only supports integers; thereafter the Reclassify (spatial analyst) 
transformed ‘Integer Mask Raster’ into a singular value (Esri, no date a). 
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To ensure the population models were comparable for later statistical analysis, attaining 
equal population counts for each population model ensued. The process adjusted 
population counts to the UNPD estimates for 2020 (United Nations Population Division, 
2022), using the equation ‘popi*(UNPD_pop/country_tot_popi)’ (Sorichetta et al., 2015). 
Within the equation popi is the estimated population raster for the year, UNPD_pop is a 
constant raster representing the 2020 UNPD estimates, and country_tot_popi is a constant 
raster representing the total pop for the year (Sorichetta et al., 2015). To achieve adjusted 
population counts, figure 1 demonstrates ‘Warped Population Data 1’ processed through 
Zonal Statistics (Spatial Analyst) and the Raster Calculator (Spatial Analyst). The Zonal 
Statistics (Spatial Analyst) produced the ‘Population Constant Raster’ using the sum 
function; whilst the Raster Calculator (Spatial Analyst) used the equation to produce the 
adjusted population counts. An optional check, found in the appendix, uses zonal stats to 
sum each pixel of the new ‘Population Output’ to ensure the total equals the UNPD 2020 
estimate. 

The final stage presented in figure 1 depicts the ‘Settlement Data’ transforming from a 
categorical to continuous data type and the subsequent nibbling to eliminate inconsistent 
pixels. The European Commission (2020b) states the GHS-DUG standalone tool only 
supports continuous datasets, so the categorical WorldPop ‘Settlement Data’ requires a 
data type transformation. The transformation entailed using Project Raster (Data 
Management) to 100-meter grid cells, then applying Aggregate (Spatial Analyst) to 1000-
meter grid cells. 

Following the data type transformation, the preparation for nibbling ensued. Nibble’s 
(Spatial Analyst) functioned to reduce inconsistencies surrounding the coastline where 
differing settlement models may allocate additional buildings. Effectively, where 
discrepancies exist the settlement model’s structure is unable to clarify whether 0’s are no 
data, are no people, or are no buildings. To resolve the issue, Nibble (Spatial Analyst) 
produces raster’s where 0 equates to no buildings (Esri, no data b). To complete nibbling, a 
settlement mask was required (no date, no data b). Applying Extract by Mask (Spatial 
Analyst), employing the ‘Raster Mask’ derived from population data, ensured the 
‘Settlement Nibble Mask Raster’ possessed a corresponding extent with the ‘Population 
Output’ — in preparation for the European Commission’s (2020b) GHS-DUG standalone 
tool. 

Similarly, for the Nibble (Spatial Analyst) to perform the pixels of ‘Settlement Nibble Input’ 
necessitated a value where no data corresponded with the extent of ‘Warped Population 
Data 2’. Effectively, the now assigned values of ‘Settlement Nibble Input’ are nibbled to the 
closest value where no data persists in the ‘Settlement Nibble Mask Raster’ (Esri, no data b). 
Ultimately, producing raster’s where the extents are uniform with ‘Warped Population Data 
2’. For clarification, the ‘Warped Population Data 2’ is the same raster as ‘Warped 
Population Data 1’. As figure 1 illustrates, ‘Warped Population Data 2’ uses Reclassify 
(Spatial Analyst) to allocate a single value greater than all ‘Settlement Nibble Mask Raster’ 
values. The Mosaic to New Raster (Data Management) tool then combines the created 
‘Settlement Background Raster’ with the ‘Settlement Nibble Mask Raster’. So, the formed 
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‘Settlement Nibble Input’ now possesses values — corresponding to the extent of ‘Warped 
Population Data 2’ — where no data persists in the ‘Settlement Nibble Mask Raster’. The 
Nibble (Spatial Analyst) thereafter produced the ‘Settlement Output’; where the raster’s no 
data values indicate absence of buildings and possesses the same extent as the ‘Population 
Output’. 

After completing the workflow outlined in figure 1, the ‘Population Output’ and ‘Settlement 
Output’ files are prepared for the GHS-DUG standalone tool. Specific details of the input 
information for the GHS-DUG standalone tools exists within the Appendix. The European 
Commission’s (2020b) GHS-DUG standalone tool creates a settlement classification gridded 
raster that maps the three distinct degree of urbanisation classifications. Eurostat (2021) 
details the threshold for each classification:  

• Urban Centre – a dense cluster of continuous 1km2 grid cells, employing a 4-point 
contiguity that excludes diagonals, containing a population density of minimum 
1,500 inhabitants per 1km2. The collective population of the urban centre must 
reach 50,000 residents. Breaks in the cluster are filled if lesser than 15km2; whilst 
continuous cells that are minimum 50% built-up may be included. Urban centre cells 
are classified as ‘3’ in red. 
 

• Urban Cluster – A moderate density cluster consisting of continuous 1km2 grid cells, 
employing an eight-point contiguity that includes diagonals, containing a population 
density of at least 300 inhabitants per 1 km2. The collective population of the urban 
cluster must reach 5,000 residents. The urban centre cells are removed from the 
urban cluster. Urban cluster cells are classified as ‘2’ in orange. 
 

• Rural Grid Cells – Mostly low-density cells that are not classified as urban centres or 
as urban clusters. Rural grid cells are classified as ‘1’ in green. 
 

In effect, the outcome of applying the GHS-DUG standalone tool for all four cases of 
population model type produces four output rasters detailing the three classifications. 
Before analysis, the output rasters clipping to matching extents, owing to the outputs from 
the European Commission (2022b) GHS-DUG standalone tool appearing in tile form). The 
Clip Raster (Data Management) tool used the ‘Mask Raster’ — derived from the Top-down 
Unconstrained population model — upon all outputs to match the extents to Nigeria’s 
boundary. Within the geoprocessing tool pane, keep ‘maintain clipping extent’ unticked and 
snap to the GHS-DUG output. The Top-down Unconstrained population model’s mask was 
selected as the raster holds the largest area. The produced rasters are now prepared for 
statistical analysis. 
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Statistical Analysis 

Classification Statistics 

The first investigation comprised of a statistical analysis focusing on the area and 
populations of each distinct classification. The method entailed applying Zonal Statistics as 
Table (Spatial Analyst) to sum each output of the GHS-DUG tool; subsequently, exporting 
the table to excel. Calculating the percentages and standard deviation for each table 
ensued. Ultimately, the classification statistics comprised of the real area and population of 
each GHS-DUG output, with the associated percentages and standard deviation. Similar 
approaches were performed in related papers (Bueno et al., 2019; Dijkstra et al., 2021). 

Entropy 

 The purpose applying entropy was to understand the frequency of pixel value change 
across the 4 GHS-DUG outputs. Doing so, held significance to determine variation in 
classification type. Entropy proved appropriate as the concept measures the frequency 
difference of a phenomenon across a range (Mohajeri et al., 2013). The entropy output map 
— supplied by Dr Maksym Bondarenko of WorldPop — displayed the frequency of change, 
amid all 4 output rasters. Once obtained, the map was converted into an integer using the 
Int (Spatial Analyst) and Raster Calculator (Spatial Analyst) geoprocessing tools. The raster’s 
associated table was after exported to excel where associated percentages were calculated. 

Binary Comparison 

The final analysis sought to uncover the degree of change amid jumping pixel values. The 
previous approaching utilising entropy only displays whether the pixel has jumped, not the 
number of jumps. If one GHS-DUG output pixel jumped from urban centre to urban cluster 
and the remaining rasters stayed as urban centre; whilst a different pixel jumped from 
urban centre to rural grid cell with the remaining pixels staying as urban centre — entropy 
would present the same score (Mohajeri et al., 2013). Uncovering the extent of change 
holds importance, since greater discrepancies indicate greater uncertainty in the degree of 
urbanisations methodology. Binary Comparison compensates for the lack of information 
entropy provides — through displaying the degree of jumping as percentages (Sorichetta et 
al., 2011).                                                           

The method encompassed  
dividing three of the GHS-DUG 
output rasters individually by 
the GHS-POP GHS-DUG output 
raster, using the Raster 
Calculator (Spatial Analyst). 
GHS-POP was selected as the 
standard for comparison as  
the European Commission (2022) 
 produces the GHSL products and 
 is the baseline (European Commission, 2022). 

  GHS-POP GHS-DUG Output 
 WorldPop 
GHS-DUG 

Output 
 Pixel value 1 2 3 

1 1 2 3 

2 0.5 1 1.5 

3 0.33 0.66 1 

Table 2 - Binary Comparison Outputs 
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After dividing each GHS-DUG output by GHS-POP, the three produced rasters were 
individually multiplied by 100 and turned into an integer; applying the Raster Calculator 
(Spatial Analyst) and Int (Spatial Analyst) tools respectively (Sorichetta et al., 2011). The 
three raster’s associated tables were thus exported to excel and calculating percentages 
based on extent of pixel jumps followed. Table 2 illustrates the output values of binary 
comparison — where green values indicate the pixels are the same, orange indicates a jump 
of 1 and red indicates the pixel jumped twice. 
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Results 

GHS-DUG Output 

Figures 2, 3, 4 and 5 illustrate the final clipped output from the GHS-DUG tool. Visually, the 
figures show rasters that possess relatively similar spatial patterns. The red urban centres 
appear in the same areas; whilst the green rural grid cells are allocated uniformly. The 
largest discrepancy is amid the orange urban clusters. Figure 2, for example, displays a 
greater frequency of orange urban clusters compared with the remaining three figures. 
Overall, however, the GHS-DUG outputs present rasters with similar spatial patterns. 
  

 

   Figure 5 - GHS-POP GHS-DUG Output, Nigeria 2020 

Figure 2 - WorldPop Top-down Unconstrained GHS-DUG Output, 
Nigeria 2020 

Figure 3 - WorldPop Top-down Constrained GHS-DUG Output, 
Nigeria 2020 

Figure 4  - WorldPop Bottom-up GHS-DUG Output, Nigeria 2020 
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Classification Statistics 

Comparable to the rasters produced from the GHS-DUG standalone tool, the classification 
statistics produced similar results for each GHS-DUG output. The first point of interest 
shown in the tables below, however, concerns the WorldPop Top-down Unconstrained 
population in rural grid cells. The percentage is approximately 9% higher compared with the 
remaining tables. Likewise, table 3 shows WorldPop Top-down Unconstrained rural grid cells 
area are approximately 5% smaller. So, the WorldPop Top-down Unconstrained GHS-DUG 
output comprises of a larger rural population within a smaller area. The remaining GHS-DUG 
outputs area and population are highly similar. WorldPop bottom-up and GHS-POP’s area 
are particularly alike. The two standard deviations that are relatively high are rural grid cell 
and urban centre populations — appearing at 4.718 and 4.140 respectively. In contrast, the 
urban centre area and urban cluster population both possess a standard deviation lower 
than 1, indicating small variation surrounding the mean. Upon reflection, although the 
classification statistics are largely similar, the WorldPop Top-down Unconstrained presents 
the greatest comparative difference; whilst rural and urban centre’s standard deviation 
produced the greatest variation. 

Table 3 - WorldPop Top-down Unconstrained Classification Statistics, Nigeria 2020 

Classification Area (km2) Area (%) Population Count Population (%) 
Rural Grid Cells 782448 85.795 70345962.981 33.847 
Urban Clusters 109233 11.977 72790775.514 35.023 
Urban Centres 20320 2.228 64698698.892 31.130 

Total 912001 100 207835437.387 100 
 

Table 4 - WorldPop Top-down Constrained Classification Statistics, Nigeria 2020 

Classification Area (km2) Area (%) Population Count Population (%) 
Rural Grid Cells 819,994 89.912 50754099.467 24.443 
Urban Clusters 70803 7.763 73222668.364 35.263 
Urban Centres 21204 2.325 83668491.432 40.294 

Total 912001 100 207645259.263 100 
 

Table 5 - WorldPop Bottom-up Classification Statistics, Nigeria 2020 

Classification Area (km2) Area (%) Population Count Population (%) 
Rural Grid Cells 833823 91.427 55474410.553 26.674 
Urban Clusters 63436 6.957 74860261.840 35.994 
Urban Centres 14742 1.616 77640774.554 37.332 

Total 912001 100 207975446.947 100 
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Table 6 - GHS-POP Classification Statistics, Nigeria 2020 

Classification Area (km2) Area (%) Population Count Population (%) 
Rural Grid Cells 834206 91.470 48427988.030 23.356 
Urban Clusters 60622 6.647 77119515.654 37.194 
Urban Centres 17173 1.883 81795975.949 39.450 

Total 912001 100 207343479.633 100 
 

Table 7 - Standard Deviation for Classification Statistics, Nigeria 2020 

Classification Area Percentage Population Percentage 
Rural Grid Cells 2.985 4.718 
Urban Clusters 2.472 0.957 
Urban Centres 0.338 4.140 

 

 

Entropy 

Figure 6 displays the entropy map with the associated values of pixel change. Where the 
score is 0 all the rasters remained the same, 81 indicated a single difference amid the 
rasters, 100 indicated 2 rasters were different, and 150 indicates 3 rasters are different. The 
entropy scores illustrate most pixels did not change value — namely, 85.509%. Many of 
these pixels are displayed in rural grid cells. The largest urban centres, however, are also 
displayed in green. Kano in the north, shown in figure 8, presents a green centre surrounded 
by pixels that did change. In general, the urban clusters surrounding urban centres changed 
classification the most. Very few pixels — only 0.229% — were classified differently in each 
of the GHS-DUG outputs.  The largest group of these pixels scoring 150 are displayed in 
figure 8. The remaining pixels that scored 150 were diffuse individual pixels. Entropy thus 
demonstrated pixels characterised as an urban centre or rural grid cell were similar across 
the different GHS-DUG outputs; instead, the urban clusters experienced the greatest 
variation. 

Table 8 - Entropy Scores 

Entropy Score Count Percentage 
0 780038 85.509 

81 55647 6.100 
100 74458 8.162 
150 2088 0.229 
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Figure 5 - Entropy Value Map 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 - Area of High Entropy Score Figure 8  - Entropy Scores Surrounding Kano 
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Binary Comparison 

Table 9 illustrates the extent of pixel jumps in comparison to the GHS-POP GHS-DUG output. 
Alike to the statistical comparison, the WorldPop Top-down Unconstrained GHS-DUG output 
proved comparatively different. The non-jumping pixels were approximately 4% lower 
compared to the remaining models — indicating a higher number of jumps overall. Similarly, 
the 0.33 and 0.5 values for Top-down Unconstrained were comparatively higher, again 
indicating greater variation. According to the table 2, a high 0.33 and 0.5 value indicates the 
Top-down Unconstrained possessed a greater proportion of urban centres and urban 
clusters pixels jumping compared to GHS-POP’s rural areas. The Top-down constrained and 
Bottom-up GHS-DUG outputs instead possessed a similar number of jumps in comparison to 
the GHS-POP GHS-DUG output. Overall, however, a large percentage — between 89.315% 
and 94.096% — of pixels did not jump. So, despite the Top-down Unconstrained pixels 
jumping more often, generally the pixels were jumped infrequently. 

 

Table 9 - Binary Comparison Results 

Value Top-down Unconstrained (%) Top-down Constrained (%) Bottom-up (%) 
0.33 0.477 0.266 0.035 
0.5 7.297 3.197 2.858 

0.66 0.342 0.418 0.203 
1 89.315 94.096 93.671 

1.5 0.468 0.170 0.385 
2 2.195 1.834 2.732 
3 0.005 0.019 0.116 
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Discussion 

The Dissimilarity of WorldPop Top-down Unconstrained  

Across each analysis method, the Top-down Unconstrained GHS-DUG output proved the 
most distinct compared with other population models. Among the rural grid cell 
classification, for example, the Top-down Unconstrained model allocated the greatest 
percentage of population and least amount of area. The cause of the phenomenon is likely 
due to the population estimation model’s structure. Unconstrained population model’s do 
not limit population to building footprints — so may allocate population where constrained 
population models exclude population — causing an overestimation of miscellaneous 
population in rural areas (Thomson et al., 2021). The standard deviation metrics reflected 
the population variation amid of unconstrained and constrained models. When the top-
down unconstrained dataset was removed, the rural grid cell standard deviation decreased 
from 4.718 to 1.381. Likewise, the urban centre standard deviation decreased from 4.140 to 
1.526. Evidently, the Top-down Unconstrained GHS-DUG output is the primary cause of 
variation in population. 

The structure of the Top-down Unconstrained population model is likely also the cause of 
the lower rural grid cell area allocation. Within the constrained population rasters, the no 
data pixels indicated where the building footprints were. In the WorldPop Top-down 
Constrained GHS-DUG output 366,030 km2 counted as no data; whilst in the WorldPop 
Bottom-up raster 373,104 km2 was counted as no data. In effect, including the building 
footprints constraint increased the pixels allocated too rural. The binary comparison — also 
focusing on pixel area — similarly demonstrated the Top-down Unconstrained GHS-DUG 
output produced a greater frequency of pixel jumps. Beyond this study, future work 
focusing on a population-based binary comparison may present a further pronounced 
difference. After comparing the different GHS-DUG outputs the Top-down Unconstrained 
population model was, therefore, the most significantly distinct. 

 

The Degree of Urbanisations Effect on Urban Clusters 

The urban cluster classification across the 4 GHS-DUG outputs produced the greatest 
frequency of inconsistencies. The entropy clearly demonstrated the phenomenon — where 
the greatest number of changing pixels surrounded major urban centres. Significantly, figure 
7 highlights an area surrounding the major urban centre of Ibadan, where the group of 
pixels changed with each GHS-DUG output. The claim Ibadan’s urban-rural continuum 
caused the group in Figure 7, however, is an assumption. Diffuse rivers in the location may 
also cause the discrepancies between GHS-DUG outputs. Nonetheless, the binary 
comparison demonstrated urban clusters posed greater inconstancies amid GHS-DUG 
output. Table 9 illustrated very rarely do pixels jump from a rural grid cell to urban centre 
from a WorldPop to GHSL population model. Instead, the pixels are predominantly jumping 
once, from urban centre to urban cluster or rural grid cell to urban cluster. Although the 
results indicate greater variation in urban clusters, ultimately the result is positive for the 
European Commission. Rather than allocating the pixels to the opposite classification, the 
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degree of urbanisation predominantly allocates the pixels differently by one. Though 
positive, a focus for European Commission to improve the degree of urbanisation tool may 
entail producing greater precision when allocating urban clusters. 

 

Conclusion 

The report sought to address the challenge of consistency when using population estimation 
models within the degree of urbanisation classification — outlined by the European 
Commission (2020a). Assessing the relative uncertainty of inputting varying population 
estimation models revealed generally the classification outputs were similar. Despite the 
general precision, the population estimation model displaying the greatest variation was the 
WorldPop Top-down Unconstrained dataset. A suggestion for policymakers and the 
European Commission may, therefore, arise as only applying constrained population 
estimate models. Though the Top-down Unconstrained population model proved the most 
inconsistent comparatively, overall few pixels changed amid the 4 models. The green 
expanse in figure 6, representing 85.509% of pixels maintaining the same classification 
across all models, illustrates the similarities. Without comparing these results with alternate 
countries, however, it stands impossible to comprehend whether 85.509% is high-quality. 
Equally, Nigeria may befall as an outlier — with other countries possessing greater variation. 
Appropriate countries for future research include Namibia or the Dominican Republic. Both 
countries possess dissimilar population characteristics to Nigeria; whilst also possess 
suitable population estimation models (WorldPop, 2022a). As the tests completed in the 
report are reproducible, the future research is possible. 
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Appendix 

Pop-Warp (Standalone Offline) 

• OUTPUT – ‘Population Warped Raster’ 
• POP – ‘Downloaded Population Raster’ 
• TARGET GRID -  

o Coordinate system [EPSG] - ‘54009’ 
o Pixel resolution [meters/degrees] – ‘1000’ 

Mask 

Int (Spatial Analysis Tools) 

• Input Raster – ‘Population Warped Raster’ 
• Output Raster – ‘Mask Integer Raster’ 

Reclassify (Spatial Analysis Tools) 

• Input Raster – ‘Mask Integer Raster’ 
• Reclass field – ‘Value’ 
• Reclassification -  

Start End New 
‘Minimum Mask Integer 
Raster Value’ 

‘Maximum Mask  Integer 
Raster Value’ 

1 

NODATA NODATA NODATA 
• Output Raster – ‘Mask Raster’ 
• Change missing values to NoData – ‘Untick’ 

 

Population Raster 

Zonal Statistics (Spatial Analysis Tools) 

• Input Raster or feature zone data – ‘Mask Raster’ 
• Zone Field – ‘Value’ 
• Input Value Raster – ‘Population Warped Raster’ 
• Output Raster – ‘Population Constant Raster’ 
• Statistics type – ‘Sum’ 
• Ignore NoData in calculations – ‘Tick’ 
• Process as multidimensional – ‘Untick’ 

Raster Calculator (Spatial Analysis Tools) 

• Map Algebra Expression – (Population Warped Raster * ‘UNPD Population Estimate’) 
/ Population Constant Raster 

• Output Raster – ‘Population Adjusted Raster’ 
•  
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Optional Check for Population to ensure the total equates to UNPD estimates 

Zonal Statistics (Spatial Analysis Tools) 

• Input raster or feature zone data – ‘Mask Raster’ 
• Zone field – ‘Value’ 
• Input value raster – ‘Population Adjusted Raster’ 
• Output raster – ‘Population Check Raster’ 
• Statistics Type – ‘Sum’ 
• Ignore NoData in calculations – ‘Tick’ 
• Process as multidimensional – ‘Untick’ 

Settlement Raster 

Project Raster (Data Management Tools) 

• Input Raster – ‘Settlement Downloaded Raster’ 
• Output Raster Dataset – ‘Settlement Projected Raster’ 
• Output Coordinate System – ‘World_Mollweide’ 
• Vertical – ‘Untick’ 
• Geographic Transformation – NA 
• Resampling technique – ‘Nearest neighbor’ (for categorical datasets); ‘Bilinear 

(for continuous dataset) 
• Output Cell Size -  

o X – ‘100’ 
o Y – ‘100’ 

• Registration Point –  
o X - NA 
o Y – NA 

Aggregate (Spatial Analysis Tools) 

• Input raster – ‘Settlement Projected Raster’ 
• Output raster – ‘Settlement Aggregated Raster’ 
• Cell factor – ‘10’ 
• Aggregation technique – ‘Sum’ 
• Expand extent if needed – ‘Tick’ 
• Ignore NoData in calculations – ‘Tick 
• Environments –  

o Snap Raster – ‘Mask Raster’ 

Extract by Mask (Spatial Analysis Tools) 

• Input raster – ‘Settlement Aggregated Raster’ 
• Input raster or feature mask data ‘Mask Raster’ 
• Output raster – ‘Nibble Mask Raster’ 

Reclassify (Spatial Analysis Tools) 
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• Input raster – ‘Population Warped Raster’ 
• Reclass field – ‘Value’ 
• Reclassification –  

Start End New 
‘Minimum Warped Raster 
Value’ 

‘Maximum Warped Raster 
Value’ 

‘Integer One Higher than 
Settlement Aggregated 
Raster Maximum Value’ 

NODATA NODATA NODATA 
• Output raster – ‘Settlement Background Raster’ 
• Change missing values to NoData – ‘Untick’ 

Mosaic to New Raster (Data Management Tools) 

• Input Rasters –  
o ‘Nibble Mask Raster’ 
o ‘Settlement Background Raster’ 

• Output Location – ‘Local Folder’ 
• Raster Dataset Name with Extension 

o ‘Settlement Nibble Input’ 
• Spatial Reference for Raster 
• Pixel Type – ‘Corresponding with Nibble Mask Raster’ 
• Cell size – NA 
• Number of Bands ‘Corresponding with Nibble Mask Raster’ 
• Mosaic Operator – ‘First’ 
• Mosaic Colormap Mode – ‘First’  

 

Nibble (Spatial Analysis Tools) 

• Input raster – ‘Settlement Nibble Input’ 
• Input raster mask – ‘Nibble Mask Raster’ 
• Output raster – ‘Settlement Nibbled Raster’ 
• Use NoData values if they are nearest neighbor – ‘Untick’ 
• Nibble NoData Cells – ‘Untick’ 
• Input Zone Raster - NA 
• Environment –  

o Snap Raster – ‘Mask Raster’ 

 

 

 

GHS-DUG (Standalone Offline) 

• Output – ‘GHS-DUG Output’ 
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• 50% BU in Urban Cluster – ‘Tick’ 
• POPULATION – ‘Population Adjusted Raster’ 
• BUILT-UP – ‘Settlement Nibbled Raster’ 


	Investigating the Relative Uncertainty of the Degree of Urbanisations Output Classifications using Four Population Models, Nigeria

